A Geometrical Stability Condition for Compressed Sensing

نویسنده

  • Axel Flinth
چکیده

During the last decade, the paradigm of compressed sensing has gained significant importance in the signal processing community. While the original idea was to utilize sparsity assumptions to design powerful recovery algorithms of vectors x ∈ R, the concept has been extended to cover many other types of problems. A noteable example is low-rank matrix recovery. Many methods used for recovery rely on solving convex programs. A particularly nice trait of compressed sensing is its geometrical intuition. In recent papers, a classical optimality condition has been used together with tools from convex geometry and probability theory to prove beautiful results concerning the recovery of signals from Gaussian measurements. In this paper, we aim to formulate a geometrical condition for stability and robustness, i.e. for the recovery of approximately structured signals from noisy measurements. We will investigate the connection between the new condition with the notion of restricted singular values, classical stability and robustness conditions in compressed sensing, and important concepts from geometrical probability theory. We will also prove the maybe somewhat surprising fact that for many convex programs, exact recovery of a signal x0 immediately implies some stability and robustness when recovering signals close to x0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frames for compressed sensing using coherence

We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.

متن کامل

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

A Block-Wise random sampling approach: Compressed sensing problem

The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...

متن کامل

Unmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing

Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...

متن کامل

Global Geometric Conditions on Sensing Matrices for the Success of `1 Minimization Algorithm

Title of dissertation: GLOBAL GEOMETRIC CONDITIONS ON SENSING MATRICES FOR THE SUCCESS OF `1 MINIMIZATION ALGORITHM Rongrong Wang, Doctor of Philosophy, 2013 Dissertation directed by: Professor John Benedetto, Professor Wojciech Czaja Department of Mathematics Compressed Sensing concerns a new class of linear data acquisition protocols that are more efficient than the classical Shannon sampling...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015